Program requirementsexamen
TeacherTomas Ibarlucia
Weekly hours 2 h CM , 2 h TD
Years Master Logique Mathématique et Fondements de l'Informatique M2 Logos


  • 1st-order languages, structures, theories
  • Ultraproducts, compactness.
  • Elementary extensions, Lowenheim-Skolem theorems, elementary chains.
  • Preservation theorems.
  • Back-and-forth arguments.
  • Quantifier elimination, model completeness
  • The space of types.
  • (If time allows it) Realized and omitted types, atomic models.


  • D. MARKER, Model theory, An introduction, Graduate Texts in Mathematics, 217, Springer- Verlag, New York, 2002.
  • K. TENT & M. ZIEGLER, A Course in Model Theory. Lecture Notes in Logic, Cambridge University.