Archive 2019
PrérequisMachine Learning
ValidationCC+examen
EnseignantIlaria Giulini
Horaires hebdomadaires 2 h CM
Années M2 Data Science (ouverture 2020)

Syllabus

Entrainement et usage des réseaux de neurones profonds

Sommaire

  1. Introduction to Deep Learning
  2. Forward and backward propagation and solvers
  3. Embeddings, matrix factorization, factorization machines and recommender systems
  4. Convolutional neural networks for image classification
  5. Network architectures for object detection and image segmentation
  6. Recurrent neural networks, Long Short-Term Memory (LSTM) units for learning based on sequences
  7. Learning for sequences to sequences, attention and memory
  8. Unsupervised deep learning and generative models

Bibliographie

  • Goodfellow, I. and Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
  • Chollet, F. and Allaire, J. J. (2018). Deep Learning with R. Manning Pub.
  • Chollet, F. and Allaire, J. J. (2018). Deep Learning with Python. Manning Pub.