Géométrie o-minimale
8 ECTS, semestre 2, 12 semaines
Validation | examen |
Enseignant | Tamara Servi |
Horaires hebdomadaires | 4 h CM |
Années | Master Logique Mathématique et Fondements de l'Informatique |
En termes modèle-théoriques, une expansion M du corps ordonné des réels est o-minimale si tout sous-ensemble M-définissable de R a un nombre fini de composantes connexes. Ceci peut être également formulé en des termes purement géométriques, en tant que propriété d'une collection d'ensembles réels stable par les opération booléennes ensemblistes, produits cartésiens et projections linéaires. Les ensembles définissables dans une structure o-minimale partagent de nombreuses bonnes propriétés topologiques avec les ensembles algébriques et analytiques réels (théorie de la dimension, finitude uniforme, stratification), d'où l'intérêt pour la géométrie o-minimale en lien avec la géométrie Diophantienne et arithmétique, les systèmes dynamiques non-oscillants et l'analyse asymptotique. Je donnerai une vue d'ensemble des résultats principaux sur les structures o-minimales et ensuite j'illustrerai les principales méthodes pour démontrer qu'une collection de fonctions réelles engendre une structure o-minimale. Il n'y a essentiellement pas de prérequis pour ce cours, outre que les notions de base d'algèbre et d'analyse acquises en licence : les notions de théorie de modèles nécessaires sont minimales et je fournirai de la bibliographie sur le sujet si besoin.
-