Archive 2022
PrérequisConnaissances de base en théorie des catégories
ValidationCC+examen
EnseignantPierre-Louis Curien
Horaires hebdomadaires 2 h CM
Années Master Logique Mathématique et Fondements de l'Informatique

Syllabus

La théorie de l'homotopie, ou l'étude des espaces topologiques à déformation près, a fait surgir une branche de l'algèbre appelée algèbre homotopique, où sont développés les outils pour la description de structures où les lois telles que l'associativité ne sont plus vérifiées exactement comme en algèbre classique, mais à homotopie près, ces homotopies étant elles-mêmes sujettes à des cohérences, et ainsi de suite.

La théorie de l'homotopie a aussi une dimension logique, avec l'interprétation de la notion de type comme espace, de preuve d'égalité comme chemin dans un espace et de preuve d'égalité de preuves d'égalité comme une homotopie entre chemins. Ces liens ont donné naissance à la théorie homotopique des types. La notion de fibration, qui joue un rôle essentiel en théorie de l'homotopie, est intimement liée à la notion de substitution en théorie des types dépendants.

Le cours, qui fera suite au cours de théorie des catégories du premier semestre, mais peut être suivi par des étudiants ayant déjà acquis ces bases par ailleurs, introduira les notions importantes sous-jacentes au domaine: les catégories enrichies, les catégories de modèles, et différentes façons de définir les catégories supérieures, notamment via les ensembles simpliciaux. Seront abordés aussi des sujets connexes comme les opérades et les ∞-opérades, eux aussi issus de la topologie. Le cours s'appuiera en partie sur plusieurs ouvrages parus dans les années récentes (Categorical homotopy theory d' Emily Riehl, The homotopy theory of (∞, 1)-categories de Julia Bergner, From categories to homotopy theory de Birgit Richter, Higher categories and homotopical algebra de Denis-Charles Cisinski, Simplicial methods for higher categories de Simona Paoli, qui offrent autant de lectures d'approfondissement pour les étudiantes et étudiants intéressés), avec une attention portée aux liens avec la théorie homotopique des types.