Responsable pôle scolarité Master
- Christian Sénécal
- bureau 1012
- 01 57 27 65 42
Prérequis | cours algèbres d'opérateurs I et II |
Validation | examen |
Enseignant | François Le Maître |
Horaires hebdomadaires | 4 h CM |
Années |
Ce cours est le troisième volet d'un parcours explorant les liens profond existant entre les algèbres d’opérateurs, la théorie géométrique et la théorie mesurée des groupes discrets dénombrables. Les algèbres d’opérateurs, introduites par Murray et von Neumann entre 1940 et 1950 dans l’optique de formaliser les concepts de la mécanique quantique, ont connu des progrès spectaculaires, en lien avec la théorie ergodique et la théorie des groupes, ces 15 dernières années. Ce parcours présentera quelques uns de ces résultats très récents ainsi que les techniques modernes qui permettent de les obtenir.
Ce troisième cours portera sur les sous algèbres abéliennes maximales d’une algèbre de von Neumann finie. On étudiera en détail le lien entre ces dernières et les actions préservant une mesure de probabilité de groupes dénombrables. Plusieurs résultats profonds, tels que l’unicité de la Cartan dans le facteur hyperfini II1 (Connes-Feldman-Weiss, 1981) et la trivialité du groupe fondamental de L(SL2(Z)nZ2) (Popa, 2001), seront démontrés.