Computability: recursive functions and functions computable by machines; logical characterization of computable functions; s-m-n theorem and fixed point theorems; the concept of reduction and undecidable problems.
Introduction to complexity: time and space complexity classes, hierarchy theorems, reductions, completeness, Boolean circuits, introduction to algebraic complexity.
Formal arithmetic: Peano axioms and weak subsystems; arithmetization of logic; undecidability theorems; Gödel's incompleteness theorems.
Bibliography
J.BARWISE (ed) : Handbook of Mathematical Logic (North-Holland, 1977-1999).
R.CORI & D.LASCAR : Logique mathématique : cours et exercices (Dunod, 2 tomes, 2003).
R.LASSAIGNE & M. de ROUGEMONT : Logique et Complexité (Hermès, 1996).
M. MACHTEY & P. YOUNG : An introduction to the General Theory of Algorithms (North Holland, 1978).